Износ электродов в системах резки

Электроды — это конструктивно cложные расходные детали для систем плазменной резки. Их конструкция, материал и принцип работы схож с характеристикам автомобильных свечей зажигания. Электроды, как и свечи зажигания, проводят электричество высокого напряжения в среде c высокой температурой. Поэтому материалы, из которых состоит электрод, должны быть устойчивы к воздействию образующихся при температуре веществ плазменной дуги, и высокоскоростных струй вихревого газа. Помимо этого, такие материалы должны обеспечивать надежное уплотнение, не допускающее утечек газов и жидкостей под высоким давлением. Как и свеча зажигания, электрод — это самая прочная рабочая часть в системе.

Электрод проводит питание постоянного тока от источника тока плазменной резки к металлическому листу. Стандартная конструкция электрода — это держатель из меди или композитного материала медь-серебро c эмиттером из гафния — тугоплавкого металла, устойчивого к воздействию дуги в средах воздушно-плазменной или кислородно-плазменной резки. Эмиттер постепенно приходит в негодность под воздействием высоких температур дуги и высокоскоростных потоков газа. Основной износ электрода приходится на запуск и остановку резки, когда гафниевый материал плавитcя и отвердевает, при быстром нагреве и остывании.

При нормальном использовании на краю детали образуется небольшой дефект вогнутой формы, постепенно увеличиваясь в размере (на несколько тысячных см за один раз) до 0,10–0,31 см в зависимости от конструкции, материалов резака и расходных деталей. (См. данные таблицы ниже). Когда этот дефект становится слишком глубоким, дуга цепляется за материал держателя и расплавляет его. Если электрод не может зажечь или поддержать дугу — значит, он пришел в негодность. Если расплавленный материал с электрода стекает вниз и скапливается в отверстии сопла, это приводит к стремительному и непоправимому отказу электрода и сопла.

Система плазменно-дуговой резки Медные электроды, износ в дюймах Электроды из композита медь-серебро, износ в дюймах
Прецизионная система плазменно-дуговой резки
(кислородно-плазменная резка) 0,07–0,12 см 0,15–0,20 см Система плазменно-дуговой резки с впрыском воды
(кислородно-плазменная резка) 0,10–0,20 см 0,25–0,35 см Стандартная система плазменно-дуговой резки с использованием двухкомпонентной газовой смеси (кислородно-плазменная резка) 0,10–0,20 см 0,25–0,35 см Стандартная система плазменно-дуговой резки с использованием двухкомпонентной газовой смеси 0,22–0,30 см 0,25–0,35 см В самых современных системах кислородно-плазменной резки срок службы деталей обычно составляет 1–2 часа фактического времени «на дуге» или 200–300 прожигов. В системах воздушно-плазменной резки этот срок может в два раза превышать указанный, достигая тем самым 400–600 запусков. Это объясняется тем, что содержащийся в воздухе азот понижает интенсивность реакции воздуха с электродами. В системах кислородно-плазменной резки с инертными пусковыми газами и плавным изменением тока срок службы электрода может достигать 1000 или более запусков.

Новое состояниеНовый электрод. Представленный в этом примере электрод имеет конструкцию из сварного композитного материала медь-серебро с серебром в передней части электрода и медью в его задней части. В центре детали расположен неиспользованный гафниевый элемент. Естественный износЭлектрод с естественным износом. Дефект гафниевой вставки образован в ее центре и однородно по форме, что свидетельствует о правильном выравнивании расходных деталей и соответствующей скорости потока вихревого плазмообразующего газа. Глубина дефекта составляет приблизительно 0,25 см. Передние края детали ровные и четкие. Цвет серебра существенно не изменился. На передней части детали заметны оксидные образования серого оттенка, что является нормой. Естественный износ на половину от полного износаЭлектрод с обычными признаками естественного износа. Данный электрод сняли с системы до окончания срока службы по другой причине, например: скольжение резака по листу, удар резака, изменение напряжения, изменение качества резки и т.д. Глубина дефекта составляет 0,19 см. Несмотря на то, что этот электрод выглядит как отработанный, он еще сможет выполнить 100 или более прожигов, а его дефект может увеличиться до 0,25 см или даже до 0,35 см, прежде чем он выйдет из строя. Дефект не по центруЭлектрод с дефектом, смещенным относительно центра. Эту проблему легко обнаружить, так как такое расположение дефекта говорит о серьезной проблеме с потоком газа (неисправный или закупоренный завихритель) или о разбалансировке деталей резака (вследствие ошибок при сборке и проблем с подгонкой деталей). Если эту проблему не удается устранить путем полной замены деталей резака, тогда это может свидетельствовать о неисправности самого резака. Влага при запускеНаличие влаги при запуске дуги. Такие детали имеют неровные следы воздействия вихревой дуги от выточки под ключ до контактной поверхности электрода. Влага в газе, который подается до возбуждения дуги, приводит к тому, что серебро подвергается воздействию высоких частот. Передние края серебра нечеткие; качество поверхности, как при обработке пескоструйным аппаратом. Проверьте газ, который подается до возбуждения дуги, на наличие влаги. Быструю проверку можно выполнить с помощью бумажного полотенца или листа бумаги. Поместите чистое бумажное полотенце под резак и включите подачу газа в системе (только в режимах TEST (ТЕСТ) или GAS CHECK (ПРОВЕРКА ГАЗА)!). На полотенце не должно быть признаков наличия влаги или загрязнений. Утечка охлаждающей жидкостиПроще всего обнаружить проблему утечки охлаждающей жидкости.
  • Сильное искрение контактной поверхности электрода;
  • На боковых поверхностях электрода имеются дефекты и полости;
  • Передняя поверхность шероховатая и черная с блестящими точечными наплавлениями из материала держателя.
Эта проблема часто происходит из-за разреза или недостаточной смазки уплотнительных колец или по причине ненадежно закрепленных или разбалансированных деталей. Недостаточная подача газа Недостаточная подача газа при возбуждении дуги обусловливает медленное зажигание. Перенос дуги с начальной точки (как правило, это острый угол, наподобие выточки под ключ) на эмиттер длится слишком долго. На этих деталях будет достаточно однородное кольцо расплавленного материала держателя вокруг дефекта. Поверхность может выглядеть, как спаянные брызги металла, или вдоль передней части детали может образоваться сварочная ванна. Эксплуатация до отказаЭлектрод, который эксплуатировался до непоправимого отказа. Поскольку электрод расположен выше, то при его работе повреждается сопло, когда расплавленный материал выдувается с наконечника электрода и скапливается на внутренней поверхности сопла. При длительной эксплуатации, в работе всех деталей наступает такой отказ. Эксплуатация до отказа
  • Недостаточная подача плазмообразующего газа
  • Мелкие углубления вдоль всего края электрода
  • Повреждения сопла
Все это говорит о недостаточной скорости потока газа, что приводит к неконтролируемому зажиганию дуги между соплом и электродом. Проверьте скорость потока газа, подаваемого на резак. Лучше всего это сделать, используя расходомер (0–400 куб.фут/ч) со шлангом, надетым на выпускное отверстие резака тестируемой системы. При отсутствии такой возможности, можно выполнить тест на тактильное ощущение потока газа на выпускном отверстии резака, когда включена подача только плазмообразующего газа. Должен ощущаться вихревой поток газа, который действует как всасывающая сила. Высокая cкорость потока газаЕсли сопло в хорошем состоянии, но при этом электрод имеет достаточно глубокий дефект, тогда это может говорить о том, что скорость потока плазмообразующего газа может быть слишком высокой. При интенсивном воздействии вихрей плазмообразующего газа элемент быстро разрушается. Это приводит к стремительному глубокому износу. Проверьте объемную скорость потока плазмообразующего газа.